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the 5Js above 300 MeV depend crucially on them. This 
can be attacked in two ways: at moderate energies de­
tailed knowledge of the inelastic production angular 
distribution might be combined with analyses similar 
to those of Mandelstam and Soroko. At high energies 
the 5Js probably go to zero so that a phase shift analysis 

INTRODUCTION 

IN the last few years increasing amounts of evidence 
have been gathered to indicate the quantum field 

theory has sufficient untapped potential to allow it to 
deal fairly simply with the vast number of observed 
particles. The basis of this evidence is the observation 
that it is probably possible for one field operator to be 
associated with more than one particle. This possibility 
was first explored by Heisenberg1,2 and his co-workers in 
a series of papers on nonlinear field theory. However, 
Heisenberg's work involved the introduction of several 
concepts which are radically different from those of 
ordinary field theory. 

Using less radical concepts developed recently to ex­
plain the phenomena of superconductivity,3,4 it was 
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of the elastic scattering might be done solely in terms 
of the rj}s. 
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possible for Jona-Lasinio and Nambu5 '6 to develop a 
nonlinear theory in which the "pion" is not introduced 
as a separate field but as an excitation associated with 
a current of the fermion field. The basic assumption 
that allows the occurence of the pion is that the vacuum 
is a degenerate state. In particular, it is assumed that 
the vacuum is no longer invariant under the continuous 
group of rotations in 75 space. I t is then said that the 
75 symmetry is "broken." This assumption, although it 
is alien to long cherished beliefs in the quantum field 
theory of particles, is not at all unusual in other 
branches of physics. The ground state of a super­
conductor or ordinary paramagnetism are common 
examples of "broken symmetries." 

In this work we shall study a way of "creating" a 
photon by "breaking" the invariance of the vacuum 
under Lorentz transformations. The suggestion that a 
photon might be created in this manner was first made 
by Bjorken.7 The possibility of generating a photon 
through a four-fermion interaction has also been pre­
viously examined by Heisenberg1,2 and Birula.8 The 
essential feature in the Bjorken-type theory is that the 
masslessness of the derived particle is associated with 
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The mechanism which guarantees the consistency of the angular-momentum conservation and commuta­
tion rules of a Lorentz-invariant theory with the requirement that the vacuum expectation of a vector 
operator be nonvanishing is examined in detail. A theory originally proposed by Bjorken which reproduces 
ordinary electrodynamics is presented in a manner which allows the calculation of the parameters of the 
theory. In particular the "consistency condition" is displayed and found to be quadratically, not cubically, 
divergent. It is shown that the original Bjorken solution occurs when the cutoff condition of the theory is 
taken literally. This attitude results in difficulties with current conservation and leads to transitions between 
the standard vacuum and anomalous degenerate states. These transitions alone, and not the ones directly in­
volving the massless vector particles induced by the broken symmetry, are responsible for the ultimate con­
sistency of the theory. An alternative formulation of the theory which does not take the cutoff so seriously, 
and hence places emphasis on the underlying operator structure rather than the perturbation Green's func­
tions of the theory, is proposed. This presentation is essentially equivalent to the original formulation since 
it differs only by gauge terms. However, in this case no difficulty is encountered with current conservation 
and the theory is consistent in the manner required by normal formulations of the Goldstone theorem. 
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the broken symmetry. Theorems9"11 which guarantee 
this point have been derived in a fairly general manner. 
The possible failure of the "Goldstone theorems" has 
been pointed out by Klein and Lee12 using the&non-
relativistic example of superconductivity in the pres­
ence of the long-range Coulomb force. In this example 
there are no zero-mass excitations and the consistency 
of the theory is associated with the slow drop off of 1/r. 
This example is somewhat misleading since the mere 
presence of 1/r is a manifestation of the zero-mass 
photon of a fully quantized theory. Thus, in some sense 
a zero-mass particle is involved in this problem. There 
is, however, no question that the consistency of the 
broken-symmetry requirement has occured in a manner 
outside the scope of the usual Goldstone theorem. We 
shall show that it is only possible to understand the 
original Bjorken formulation of broken Lorentz sym­
metry by associating the consistency with spurious 
transitions between states built on different degenerate 
vacuums. Nevertheless, a massless particle is present in 
this example. Although the spurious states are largely 
associated with the nature of the approximations in­
volved, the observation of this phenomenon suggests 
that the zero-mass-particle claim of the Goldstone 
theorem might always be correct in a fully quantized 
theory. However, the mechanism of its realization 
might be much more complicated than originally 
believed. 

I. GENERAL CONSIDERATIONS OF CONSISTENCY 

Before giving a specific example we shall examine the 
general properties of broken Lorentz symmetry in some 
detail. I t is assumed that we have at our disposal a 
vector-fixed current j^{x) (not necessarily conserved) 
and some standard vacuum 10) such that 

< 0 | i ^ ) l 0 } - ^ 0 . (1.1) 

Here ?7M is a constant which has the transformation 
properties of a Lorentz four-vector reflecting the trans­
formation properties of j^ix). The assumption that ^ is 
independent of the coordinate x assures us that the 
translational invariance properties of the vacuum are 
preserved. I t is, however, immediately clear that Eq. 
(1.1) is manifestly inconsistent with the usual assump­
tion that the vacuum is an eigenstate of any charge-
conjugation operator C. Thus, if such an operator exists 
in the theory under consideration, the vacuum is at 
least twofold degenerate. I t is in fact infinitely de­
generate. To see this let L be the unitary operator 
representing a Lorentz transformation l^. The usual 
requirement that the vacuum is nondegenerate under the 
transformation L, that is Lf\0)= |0), and the require­
ment that j * is a four-vector, that is Djtx(x)L=ffl(x), 

9 J. Goldstone, Nuovo Cimento 19, 154 (1961). 
10 J. Goldstone, A. Salam, and S. Weinberg, Phys. Rev. 127, 965 

(1962). 
11 S. A. Bludman and A. Klein, Phys. Rev. 131, 2364 (1963). 
12 A. Klein and B. W. Lee, Phys. Rev. Letters 12, 266 (1964). 

results in the equation 

r=-(0\r(x)\0)={0\LVj^x)LV\0)=(0\j^(x)\0). 

Since ^ does not depend on the coordinate x it follows 
that 

?^ = (01 ^ ' ( # 0 10)==/**%,. 

For a nontrivial transformation Pv this can only be true 
if ^ = 0 . We have assumed that this is not the case, and 
hence it follows that the vacuum cannot be an eigenstate 
of the transformation L. In fact, corresponding to each 
possible Lorentz transformation there must be a vacuum 
and hence the conclusion that the vacuum is infinitely 
degenerate. We emphasize that we have picked one of 
these vacuum states as a standard from which we shall 
construct all Green's functions. We denote this standard 
vacuum as 10). 

From the above discussion it is not surprising to find 
that much detailed information about such a theory may 
be found by studying the structure of (0\Vj'i(x)L\0). 
To this end, note that infinitesimal transformations may 
be characterized by L= l + J i & o ^ / ^ . JM„ are the genera­
tors of Lorentz transformations and hence have the 
property that 

(M^U1"^(*)]= \jPdv -xvd^jx(x) 

Using Eq. (1.1) it follows that 

( iA)(o | [ /^ i x W]|o) - rV-^v . (1.2) 
Since the right-hand side of (1.2) does not depend on %* 
we lose no generality be setting #^=0 on the left-hand 
side of this equation. I t is convenient to split (1.2) into 
two parts. The first and most important part, reflecting 
the behavior of the theory under Lorentz transforma­
tions, is 

(1A)(0| [J^,iH0)]|0) = g°V-^V. (L3a) 
The second part, reflecting the behavior of the theory 
under ordinary spatial rotations, is 

(iA0<o|[/'Vx(o)]|o)=g'v-sxy. (i.3b) 
Using the representation 

/ " " = d3y{_y»T0v(y)-yvT0»(y)~l, 

where T»v(y) is the symmetrical divergenceless energy 
momentum tensor, we find from (1.3a) and P*|0) = 0 
that 

/ # „ , - ( 0 , C r » W , y H 0 ) » ^ V - , , > y . (1.4) 

We are then led to define the new quantity 

c,**(y-x)=i(o\ [r^60,yx(*)]|o> 

s dAkeik^-^Cv^(k). (1.5) 
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Now (1.4) becomes 

/ d*y ykC™\y) = g^7jk~gx V , (1.6a) 

while from (1.3b) it is found that 

f ^ | > * C , 0 I X ( y ) - y C , 0 * x ( y ) ] = g V - g x ^ ^ (L6b) 

Jw is conserved so the structure of T*v(y) is such that 
in the construction of J^ we can perform the integration 
over any surface defined by y°=constant. This is the 
fact essential to the proof of the Goldstone theorem. 
However, for other considerations it is convenient to 
set ;y0=0. If we set y°=0 and substitute the Fourier 
representation of C/pX(y) into Eq. (1.6a) we find, by 
performing an integration by parts and interchanging 
the y and k integrations, that 

f d 

i(2ir)z / d*k d*(k)—C,O0X(*) = g ° V - £ x V . (1.7) 
J dkk 

This can be a useful equation for certain explicit calcu­
lations, but it must be applied with extreme caution 
since some of the integrals encountered are ambiguously 
defined when the orders of integration are interchanged. 

The quantity Cy*"x(&) is symmetrical in ,u and v since 
T»v is symmetrical. That is, 

Cr\k) = Cj»\k). (1.8a) 

Since T*v is transverse we find 

KCv^ (*) = W x (*) = 0. (1.8b) 

If j x is a conserved current it follows that 

*xCV*(*) = 0. (1.8c) 

These conditions considerably restrict the tensorial 
form that C/"x(^) may take. Because of the assumption 
that the broken symmetry does not affect the relativistic 
structure of the theory except by causing (01./" 10) = 17", 
C/^ik) must be made up of three index combinations 
of g^, 7]v, and kv multiplied by scalar functions of these 
three objects. The structure of C/v X holds essential 
information about the states of the theory. This is 
demonstrated by expressing C/v X as 

C/* = iY,l(0\T»v\v)(ri\jx\0) 

- < 0 | i x h > W ^ | 0 > ] . (1.9) 

I t is emphasized that this sum must include all possible 
intermediate states. In particular, besides the states 
built on the* standard vacuum |0), it must include the 
other degenerate vacuums and the states built on them. 
In the special case that transitions to states not built on 
|0) are irrelevant, C/vX(k) should display a standard 

Lehmann form and, thus representing an intermediate 
state of mass m, has the structure 

Generalization to many intermediate single-particle 
states is trivial but unnecessary. Inserting this into 
(1.6a) (with y°?£0) we have 

/ cPy yh / dAk e-ik°y° e^n{k2+m2)Cr!^{k) 

= / d?y yk / d% e^C^^k, (k2+m2)^2y°) 

Here 
1 

X[C, ' ^ ( f t ) I ft0-(k"+*v/' e x p [ - f ( t t + w 2 ) 1 ' 2 / ] 

+ C ^ x ( * ) U o _ ( k . + m . ) i , . e x p [ f ( k 2 + f » 8 ) 1 / V ] ] . 

Since the right-hand side of this equation is independent 
of y°, it follows that the only terms on the left-hand side 
which can make nonzero contributions are those for 
which m = 0. We thus conclude that if terms of the form 
8(k2+m2) occur, they occur only with m=0. Thus, in a 
normal structure intermediate states of zero mass such 
that C/"x(£) oc d(k2) are necessary in order to insure that 
(1.6) is possible for rj^O. This is the essence of all the 
general proofs of the Goldstone theorem. Before 
possible anomalous transitions are considered, we wish 
to analyze more explicitly the structure of C^ oc 8 (k2) 
when the current j x is conserved. 

A small amount of experimentation with this restric­
tion serves to convince one that there exist essentially 
only two basic three-index transverse forms. With 
convenient normalization these are 

8(k?)[kWkx/(rj'ky-]r)2 

and 
8(k2)g^kx. 

Here we have made the convenient definition 

g^^g^-k^/rj'k-k^/rj'k. 

From the preceding discussion it is seen that the most 
general form of C/"x(&) consistent with (1.8) is 

+cr)
2(k»kvk*/(71 • k)2)} 8(k2) (v • k)/i. (1.10) 

By virtue of relativistic invariance, the coefficients a, b, 
and c are functions of (rj-k), q2, and e(k°). 

Many details as to the structure of the relevant 
parts of these three coefficients may be determined by 
examining Eqs. (1.6). In particular, it is clear that 
C/" x is an odd function of v\. Using this observation it is 
seen that a, b, and c must be even functions of rj • k. Since 
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the operators T*v and j x are Hermitian, we see from 
Eq. (1.5) that C/vX*(y-x)^C/v*(y~x). In terms of 
the Fourier representation of C,M"X this condition is 

C^*(-k) = Cv^(k). (1.11) 

In terms of the coefficients a, b, and c, condition (1.11) is 

Since the only function of k that remains at our disposal 
is e(k°) we find 

a((v'k)\ktf) = tWo&n• *) V)+w&Cfo• kftf), (1.12a) 

b((v' k)\ktf) = €(*%((* • kytf)+M(rj. *) V ) , (1.12b) 

c((v' £ ) 2 , W ) = e(*%(fo• *) W ) + " * ( f o • A) V ) . (1.12c) 

The coefficients ah a2, Ji, 62, £i and c% are all real. 
We have now said essentially all that it is possible to 

say about C/^ without introducing additional informa­
tion. Before we do this it is, however, possible to make a 
few statements about which parts of C/"x(&) are im­
portant for the validity of conditions (1.6). These 
statements are contingent on regularity assumptions 
and a number of calculations which will not be displayed 
here. The following are found through the substitution 
of C^ik) as given by (1.10) combined with Eqs. (1.12) 
into (1.6a) and (1.6b). 

(A) The coefficients of a2, 62, and c>2 make no con­
tribution to the right-hand sides of (1.6) and hence can 
be ignored in our analysis. 

(B) If ah bh and C\ are expanded in a power series in 
(yk)2 only the terms independent of (r)-k)2 can make a 
nonzero contribution to the right-hand sides of (1.6). 
Therefore we need only consider for this purpose 
a i (0 , i^ ,J i (0 , i ?

a ) ,andci(0 J i^ . 
(C) All three terms, a, b, and c, can contribute the 

proper structure to the right-hand sides of Eqs. (1.6). 
A case that will be of prime importance occurs when 

0 = 1 / ( 2 T ) 3 and b = c=0. In this case (1.6) are satisfied 
for any Y). Another important case occurs through an 
additional restriction on C/^ik). This restriction is 
imposed because of knowledge acquired in performing 
model calculations. I t is particularly interesting because 
it corresponds to calculating in an unusual gauge in 
ordinary electrodynamics in a constant external field. 
The restriction follows naturally by noting from Eq. 
(1.2) that 

1 

-(01 D f , i x (*)] I o)vx=Eg* V - gXvv *>x=0. 
i 

This suggests that 
i>xcy*=o. (1.13) 

The condition (1.13) is the maximal restriction required 
to insure that Eq. (1.2) holds, but it is by no means 

necessary. This is an extremely prohibitive condition. 
Its validity requires that a=0 and that b = c. Hence, the 
part of Eq. (1.10) that is of interest for the validity of 
(1.13) becomes 

X [ 5 X ( * + « W V ( r ^ ) ] , (1.14) 

or more explicitly 

c,'-x(*) = Cc,i€(*»)(8(«8)A) 

This form of C1)
llvX(k) instantly yields an important bit 

of information. The term with the structure 8(k2)gX(flkp) 

shows the mixing of indices X, fx, v characterizing a 
vector intermediate-particle state of zero mass. If 
CfipX(k) oc 8(k2)kxkfik% we could not immediately conclude 
that a vector particle is present as this term is entirely 
of a scalar gauge structure. 

The substitution of the structure (1.14) into Eqs. 
(1.6a) and (1.6b) yields a restriction on the vector 77̂ . 
I t is found that 17"= —g^yf is impossible for 7 7 ^ 0. If 
rjM= (0,17) then Eq. (1.6b) is consistent with our struc­
ture for C/^ik) but (1.6a) cannot be satisfied unless 
ij==0, contrary to hypothesis. In obtaining this result 
one must be exceedingly careful about exchanging 
orders of integration because of the singular nature of 
1/rj-k. However, we find that if 17%*=0, then both 
Eqs. (1.6a) and (1.6b) are consistent with rj^O and 
that ci= l/(27r)3. The reason for this is fairly clear. Since 
we are examining a massless vector particle, the current 
j " must be identified with an electromagnetic field A". 
Restriction (1.13) can then be restated as the gauge 
condition 97^^=0, and combined with the requirement 
that <0|i4"|0) = ^ , yields ^ ( 0 | ^ ^ | 0 ) = t 7 2 = 0 . The re­
quirement 772 = 0 results in the vastly simplified struc­
ture C/vX(k) = [ l / (27r)3]e(^)5(^)^x^")+possible terms 
which do not contribute to the consistency of (j'i) = rj,x. 

We now consider the case when the anomalous nature 
of the degenerate states contributes to the consistency 
of the broken symmetry requirement, and normal single-
particle Lehmann representations are not valid. We do 
assume, however, that the contributions are not so 
anomalous as to preclude any sort of spectral representa­
tion for C^ik). I t is easily established that any C/"x(&) 
which has the property that C/vX(k) | ̂ o ^ ^ i 0 ) is con­
sistent with the time independence of (01 [JliV,j*(x)'] \ 0). 
As has been demonstrated, this is valid with the normal 
particle-spectrum assumption necessary for the proof 
of the presence of a zero-mass particle. However, the 
availability of the vector 77" allows us easily to construct 
quantities which do not have a particle interpretation. 
In particular, note that since 8(rj-k)\k-*o<x8(k°) this 
quantity might dominate the structure of C/"x(&). In 
fact, if the restriction of current conservation is re­
moved, it is clear that 

Cr*(k)==Zi/(27ry-]d(ri.k)k*rvv (U5) 
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is consistent with d^T^^O and satisfies Eqs. (1.6) for 
17** timelike or lightlike. This structure does not have 
any normal particle interpretation and in fact, for 
ritt= —g^rj0, gives contributions to (0| [JQk

1j
h~] | 0) which 

look somewhat like vacuum-vacuum transitions. This 
must be essentially the case, since in these broken-
symmetry theories structure (1.15) may be identified as 
representing transitions between states built on different 
vacuums. We shall be able to construct a set of pertur­
bation Green's functions that display transitions of this 
sort. They will, however, be directly associated with a 
zero-mass particle so the conclusions of the Goldstone 
theorem, though not the usual spectral arguments, will 
be correct. We suspect that this might always be the 
case in fully relativistic four-dimensional theories when 
"spurious states' ' are responsible for consistency of the 
theories. 

II. THE SELF-COUPLED FERMION MODEL 

We consider a charged spin-J field coupled to itself by 
a vector Fermi interaction. This example was considered 
by Bjorken7 in a less complete and somewhat misleading 
manner. 

The Lagrangian density is taken to be 

£ 0) ^[i^-^d^-mWf] 
+igo(\WV#) ( ^ Y M # ) + ^ 6 A / V # ) • (2.1) 

We use the conventions /3=7° and 707*4-7*70= — 2gfiV. 
j> is a source current which will be set equal to zero at 
the end of a calculation. The field \p is Hermitian. The 
use of Hermitian fields is not necessary but prevents us 
from falling into traps which tend to destroy the theory. 
The quantity q is the charge matrix such that g=cr2. 
We shall use the definition 

The field equation derived from (2.1) is 

ipyd^-niM+goj^Py M ^ + 2 / ^ y " ^ = 0. (2.2) 

Taking the transpose of Eq. (2.2) we find 

id^y^+m^-~goj,^l3y^~2J^I3yfiq=0. (2.3) 

From (2.2) and (2.3) it follows that dllj'
t(x)=0. We 

shall identify j"(x) with the current discussed in the 
first section. The symmetry is "broken" by taking 

V»(x)\j^0= 
(0ai\jHx)\0*2) 

(2.4) 
•<0cri|0o-2> 

We first study the Fermi two-point function G where 

i((bi\(M*)f(y)P)+\0*2) 
G(x,y)--

<0cri|0o-2> 

G satisfies the equation 

iy»dli-fn+ (gori»+2Jli)y»q+go-
id 

8J» 
\G=-1. (2.5) 

In order to demonstrate the analogy of this theory with 
electrodynamics, it is convenient to define the quantity 

a»=goVt*-\-2j» 
<0cr1 |g0^/V#+2^|0(72> 

<0a-i|0<72) 
(2.6) 

This definition is meant to be highly suggestive. The 
fact that it will be useful is suggested by the form of the 
field equation which corresponds to (2.2) in ordinary 
electrodynamics. This equation is 

ipydrf - mffl+eQA * • fiy^=0. (2.7) 

Comparing (2.7) to (2.2) we see that they are formally 
identical, within constants, if in (2.2) we make the re­
placement goj»+2J»—>A». We now define a new 
propagator ^v(xy) through the equation 

£>»v(xy)--
8Jii{x) 

The quantity G^v(xy) is defined by 

t<0tn| U"(x)j>(y))+\0<r2) 

av(y) = 2g^5(xy)+goG»»(xy). (2.8) 

G^(xy)=-
<0o-i|0o-2> 

i(0ai\r(x)\0a2) (GoiI j>(y) \0<T2) 

<0o-i|0«r2) (O^lOa-,) 
(2.9) 

I t is our intention to identify ^v(xyy) with the photon 
propagator of ordinary electrodynamics. We shall in fact 
show the consistency of this identification by observing, 
in the case where J=0 and £)fll'(xy) = feik'(x~y)£)fiV(k), 
that a>"(£) has a pole for k2 = 0 and that the residue of 
this pole has a part that is proportional to g*". By the 
chain rule, 

8a,(y) 

8J»(x) 8J»(x) 8av(y) 
z£>w(x,y)-

8®y(y) 
(2.10) 

Therefore, using (2.6) and (2.10), Eq. (2.5) may be 
rewritten in the suggestive form 

%y 
h 1 

'd^-nt+avytf-goiy^* G = - l . (2.11) 
8avJ 

As in ordinary electrodynamics, it is convenient to 
define a vertex function by 

qV fa,xy) ss 8G-1 (xy)/8 a» fa). (2.12) 

The appropriateness of (2.12) is confirmed by noticing 
that in lowest order for G~l that qTll=yfiqt With this 
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new definition we may write Eq. (2.11) as 

[ iy^ix~~m+ afiYrf-gWrqWGqTJG= - 1 . (2.13) 

Corresponding to (2.13) it is found in ordinary electro­
dynamics that 

Ziylxdfi~?n+eoaefiytiq-eoiyfiq£>efiVGqrv~]G= - 1 . (2.14) 

Here a/=(0(n|yl^|0a-2)/(0o-i|0a-2). The similarity be­
tween (2.13) and (2.14) is striking. When we have 
demonstrated that 3>" has the correct properties we 
shall have created, as a result of this similarity, an 
electrodynamic theory from the Lagrangian (2.1). Note 
that Eq. (2.14) is exact. There is one important differ­
ence between Eqs. (2.13) and (2.14). In Eq. (2.14), 
when all external sources are turned off, ( $ / = 0 by 
virtue of charge-conjugation invariance. On the other 
hand, in Eq. (2.13) when / * = 0 , QL^^g^K Thus, in the 
absence of external sources, Eq. (2.13) has the behavior 
of electrodynamics in a constant external field dti=goyfX 

= (d/dxli)(gor]cixa). A constant A11 field in electro­
dynamics can have no physical effect since it produces 
no electric or magnetic fields. However, once such a 
constant field is introduced into a theory, it must be 
handled in a careful manner in order to avoid destroying 
the consistency of the theory. 

In order to construct this theory explicitly we shall 
examine just the lowest approximations and show that 
they have the correct structure. Iteration of these ap­
proximations through the definitions and equations 
above serves to establish the equivalence, in all orders, 
of our theory to electrodynamics. I t is emphasized that 
this iteration must be done with great care in order to 
maintain relation (2.4). 

The first approximation for the function G is obtained 
from (2.11) by dropping the dG/dav term. We then find 
that 

&y*dp-m+2J'^llq+g{flii'yllq]G= - 1 . (2.15) 

If we set Jfl=0,G has the representation 

- / • 

G(x,y)= / d4pe^'^-y)G(p). 

From Eq. (2.15) it follows that 

G(p) = {(2TryZyp-g0qyyj+nil}-1. (2.16) 

I t is often useful to expand G(p) in terms of the eigen­
values + 1 and — 1 of q. We therefore make the 
definitions 

and 
G+(p) = Z(2iry(y.p-g*Y.v+m)3-i (2.17a) 

G„(^) = [ ( 2 7 r ) 4 ( 7 ^ + W ^ + ^ ) ] ~ 1 . (2.17b) 

I t can then be seen that 

G(p) = KG+(p)+G-.(p))+q®(G+(t)-G-(pm. (2.18) 

Combining the denominators that occur in expression 
(2.18) we find the other convenient representation for 
G(p). This is 

G(P)=- (2w)-*i(f+m*+goW)2--4go2(v- pyy1 

X{(y-p-fn)(p2+ni2+go2y2)~2go2(yy)(rp) 

+goq(~yyZp2+ni2+go2r]2'] 
+ (yp-tn)2(rrp))}i (2.19) 

I t is necessary that the condition (2.4) on the current 
be satisfied. In terms of G(p) this condition is 

r=— / ( 

i J 
dAptvqy»G(p). 

Using Eq. (2.19), Eq. (2.20) may be written as 

&P gvli(p2+m2+goy)-2pvp» 

(2TT)4 (p2+m2+gQYy-4g0
2(yj'P)2' 

*go f 
r=riv— / 

i J 

(2.20) 

(2.21) 

On inspection of Eq. (2.21) one sees that the integral 
on the right-hand side is quadratically divergent. There­
fore, in order for condition (2.4) to make sense, this 
integral must be cut off in some manner. For most of 
our discussions it will be unnecessary to make the exact 
form of the cutoff explicit. We require that the nature 
of the cutoff is such that it does not appear in the tensor 
structure of integrals and hence does not interfere with 
the relativistic structure of our theory. 

With this in mind the integral appearing in (2.21) 
may be written as 

/ dAp 
gv»(p2+ni2+go2r}2)-2p»pv 

;(2TT)4 J (p2+m2+go2rj2)2-4:go2(v'p)2 

= a ( ^ A ) r M - Y ( ^ A ) * ? V . (2.22) 

In (2.22), A is the parameter characterizing the cutoff. 
Inserting (2.22) into (2.21) we obtain the condition 

r,»=rl<*tfA)+ifttf£)l. (2.23) 

This has a trivial solution ^ = 0 . However, the require­
ment of the broken symmetry is that rj^0. Using this 
requirement, Eq. (2.23) reduces to the condition 

l^OMRVWA). (2.24) 

Before the coefficients a and y are determined we 
wish to examine Eq. (2.20) using (2.23) as a starting 
point. In this case 

t)»=i / * dAp[try»G+ (P) - try«GL (p)'] 

-—17 dAp try ' 
1 

[y-p—goyy+nf} 

1 1 
dAp try* 

Lyp+goyrj+m]-
(2.25) 
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In the above representation it is extremely tempting to 
translate the first integral that appears by making the 
substitution p—gor)—>pf and to translate the second 
integral by making the substitution p-\-gor) —> pr. If this 
is done with abandon we get ̂ = 0 . However, it must be 
borne in mind that the range of integration on p is not 
infinite but is restricted by the cutoff A. Therefore the 
translation suggested above is reflected in the limits of 
integration and to avoid obtaining 77^=0 these limits 
must be finite. Thus, the cutoff A must be taken fairly 
seriously. Just how seriously it should be taken leads us 
to some interesting problems. To avoid difficulties we 
must be exceedingly careful about translating integrals 
that are divergent when A—><*>. We shall find in the 
most realistic formulation of the theory that the above 
integral is the only one in which we encounter any 
difficulty. With the assumption that A/m is very large 
it is always possible to translate integrals which are 
finite in the limit A ~» <*> without regard to the effect on 
the limits of integration, since for large A/m these 
integrals are independent of A. 

As an application of this we note that since the 
quantity 

"±M (gov)=* I d*p try»G± (p) 

goes as A3 for A —><*>, it follows that 

^f±/i(gov) = ij dAp t r y J G ± ( # ) - [ G ± ( p ) ] r o - o 

(—G ± (P) ) go~A—-G±(p)) go 
\dgo /0O==O 2\dgo2 /g=o 

1 / d» \ 
— ( T O ± ( P ) ) 

3!Wg0
3 / 

go3 (2-26) 

is finite as A —> 00. I t follows that the integral involved 
in (2.26) may be translated without regard to the cutoff. 
Therefore co/+"=co/_"=0. Consequently 

i / d4pltry^G+(p)-tiy^G^(p)^o)+^(gov)-^-^(gov) 

= i fd*p\2gI—G+(p)} +^ ( -—G + (# ) ) ) . 
J I Ldgo J 00=0 3 ! Wgo3 / 00=0 J 

We have found the significant result that the quantity 
co+

M(go??)— co_"(go?7) will depend only on go and go3 and 
consequently only on go*?" and goV??M. This information 
is most conveniently put to use by noting that from the 
right-hand side of Eq. (2.21) we have 

u+^igoy)—co_"(g0??) 

^Sgo f d*p g^(p2+m2+goV)-2p^pv 

- ( 

To obtain the behavior of this expression we expand the 
denominator occurring in the integrand of the right-
hand side. We find 

v£go r 

2w)H J 

r 1 M + g o ¥ } - 2 j > y 

(2T)HJ '{IPl+goW-WivP)2 

= a 
(2T)H J M2L 

Wv-P)2 2g0y 

M2 M 
X { r " ( M + g o V ) - 2 ^ 1 . (2.27) 

Terms of order go4 and higher have been discarded 
since by the above discussion they make no contribu­
tion. We have introduced the space-saving notation 
p2-\-m2—\_p~\. To evaluate (2.27) we shall demonstrate 
our method of evaluating the integrals encountered. 

The basic quadratically divergent integral that occurs 
in the theory is 

8g0 f d*p 
Q(A,m2)^ / • . 

(2TT)HJ p2+m2 

The basic logarithmically divergent quantity is 

Sgo f d*p 
(2T)H J 

L(A,< 
{2TT)HJ (p2+m2)2 

The basic finite integral that occurs is 

F(A,m2)^ Sg0 r d*p 

m2 (2TT)HJ (p2+m2Y' 

(2.28) 

(2.29) 

(2.30) 

I t is possible to express all integrals that occur in 
terms of Q, L, and F without ever explicitly calculating 
these quantities. 

I t is, however, of some convenience to choose a 
particular cutoff scheme and to calculate Q, L, and F in 
this scheme. We choose to use an invariant 4-momentum 
cutoff so that the upper limit in any of our integrals is 
specified by pm^2=A2 in Euclidian four-space. We then 
find that 

Q=—\A2-m2H 
27T2L 

goA2 

2 ^ : 
(2.31) 

while 

gof / A2\ i n go A 
L=— In 1 + — ) = — I n - (2.32) 

2TT2L \ m2l l+w2/A2JA-»oo TT2 m 

and 

F ±ri/_i_)_!_L_i 
47r2Lw2 \w2 /A2+l/ A2 (l+w2/A2)2JA-,co 

(2TT)HJ (p2+m2+gfy2)2-4go2(vp)2 47r2m2 
(2.33) 
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It is now elementary to evaluate the other integrals Manipulations are somewhat simplified if we define a 
which appear. As an example, consider new quantity G** as 

8g0 f p»pv -id 
/ ftp . G*(s; x,y)= 

(2T)HJ 02+m2)3 «/„(*) 

By the postulated nature of the cutoff and relativistic Equation (2.37) becomes, with the aid of this definition, 
invariance it follows that 

G»v(z,y) = -tr[G*(s; x,x)yvql. (2.38) 
8go f P»PV r " 

/ ftp =—2 
(2v)H J (p*+m*)* 4 thus we have 

The quantity X is determined by noting that Gfl(z') x,y) 

Sg0 , p2 SgQ f ! ^ ^~G{xi)l{-ib/bJM)G-l(m~]G(i\y)- (2.39) 

/ ftp—^ = — X. Since G~lG= 1 it follows that (-ib/bJ*) {G~lG) = 0 and 
2ir)HJ ' ~ ' ^ ' 

(2T)H J (p2+m2)3 (2ir)H J (p2+m2)2 ^ ° m s u r e t n e consistency of our approximations we use 
G~l as determined by Eq. (2.15). Displaying all the 

SgQm2 r ftp g%X indices this is 

~~{2ir)%J (p2+m2y 4 G^K«0 = p7 a aa«(€-O+^a(«)7 a ««(«- - | ) f i« -€0 

or X=L-F. We have thus found + 2 / t t ( a , ) 7 ^ ( « - Q * t t - £ 0 - « » t t - { 0 ] . (2-40) 

8# r j>*i>v g*v Inserting (2.40) into (2.39) and using (2.38) we find that 
— \#P = — U--F1- (2.34a) ^ , , .^/ ,xro */ M 

{2ir)HJ (p*+ni2y 4 G*(z;x,y) = -tG(xQ[2y>qb(z-Q 
, . , . +g«G'ia(2,©7«g]G(f,y). (2.41) 

For the time being we do not drop F because it is small 
relative to L. This sort of approximation has profound Inserting (2.41) into (2.38) and setting 7 = 0 we find 
effect on the structure of the theory and will be dis-
cussed in detail. Using the same methods it is found that [ ^ ( y - Q - g o * txyvG{y-QyxG(H-y)]G *({-*) 

= 2i tr[_yvG(y-z)y*G(z-yy]. (2.42) 
8g0 /• p»pvpapt 

I ftp Using the representation G^z—Q^f&pe**^*-® 
(2TT)HJ (p2+m2Y ^ XG^(p), Eq. (2.42) becomes 

= LgfXVg^+g(iag^+g^gval—[L—F) . (2.34b) r 
24\ 3 / 

Inserting the results of Eq. (2.34) into (2.27) we find 
that 

ijftp tiy»qG(p) = rm+WL-\g,WF). (2.35) 
Using the Fourier representation of the photon propa-

The condition (2.20) thus becomes gator it follows from Eq. (2.8) that 

1 = J e + J ^ Z - f e o V F . (2.36) &»(k) = l2g»y(2iryi+goG^(k). (2.44) 

In the case that the cutoff A is immense, (2.36) has the I f w e s o l v e (2-43) f o r G^(® a n d i n s e r t t h i s r e s u l t i n t o 

form l=goA*/4«*. E(l- (2'44)> w e find 

We are now prepared to examine the propagator SD̂ ". r /. 
To this end we study the function G»v(x,y) as defined by ^x-*(&) = J(2TT)4 gvX- (2TT)%0 tr / ftp 
Eq. (2.9). Using the fact that / " is the source generating L J 
U we find the useful representations XyMphMP+k)] . (2.45) 

r -is -\ -1 

G(XV(zy):=i\ vv(y) 
L 5/M (z) J Before we can invert £>„x-1 (k), it is necessary to evaluate 

g/- (2w)Hg0Jftp trlYG(p)yMp+k)iy^(k) 

= 2il ftp tr[_yvG{p)y»G{p+k)~]. (2.43) 

V -id 1 (2TT)4 f 

- txZG(x9y)Yqli . (2.37) go tr / ftp[_yvG(p)yMp+k)~]^Trvx(k). (2.46) 
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7r„x(&) is quadratically divergent as A —*co. Since irv\{k) 
is even in k it follows that the quantity 

-l(d/dkl) {d/dk™)^(k)-]k^klkm (2.47) 

is finite. I t is our intention to find irvX(k) through 
Eq. (2.47) rewritten in the form 

TTv\k)=Tfv\k)+TC*\G) 

+ i(d/dkl)(d/dkm)irvX(k)Jk=oWkm. (2.48) 

We shall first find Trf
vX(k). Using Eq. (2.18) it is seen 

that, as an alternate expression to (2.48), we may write 

TTV\(k) = 
(2*)4 

•Id' tr 

+y£-(p)yxG-(p+k)l. (2.49) 

I t is easily found that to determine 7r/x (k) we need only 
calculate the terms of order k* and greater of 

2go f I 
/ d*p tr! 

i(27r)47 

1 
- 7 \ -

|_ (y.-p+m) y (p+k)-\-mA 

This function is the "photon mass" of ordinary electro­
dynamics. This is a well known function and it is 
cataloged in any textbook. I t is found that 

*yx(&) = (gvW-k»kk)I(k2)2g0, (2.50) 
where 

i k2 r (i+2w2A2)(i-4^2A2)1/2 

/(#) = / dti2 

4TT2 3 y4«« K2\_K2+k2-ie~] 

is the function appearing in ordinary electrodynamics. 
Next we shall evaluate 

„.«*(()) = _ _ g 0 / #p tYyG(p)y*G(p). 

This task is made quite simple by noting that from Eq. 
(2.16) it follows that 

dG(p)/dp"= - {2irYG{p)y^G{p) 
= -(l/go)q(d/dr,»)G(p). 

Inserting this into the form above for 7r"x(0) results in 

1 d f 
^ x (0) = / d4p tvqyvG (p). 

i V J 
Using (2.51), Eqs. (2.35) and (2.36), we have 

(2.51) 

(2.52) 

I t is convenient to introduce a new constant C = f Fg0
2 in 

which case (2.52) becomes 

^ ( 0 ) = - ^ x + C i y V . (2.53) 

To complete the analysis it is necessary to evaluate 
the parts of irpX(k) quadratic in k. The quantity 
d2wvX(k)/dkldkm | fc^o behaves as ln(A/w) as A ->QO . The 
quantity 

dVx(&)| 

dkldkn 

r d V A ( £ n •avx(*) 
dkldkm 

finite 

is finite as A —»<*> and hence we may translate r\ in the 
integral representation of 

•<9VX(£) 

L dkldkn 
k~0—'finite 

to find that this quantity is zero. We therefore conclude 
that d2TrvX(k)/dkldkm\k=Q cannot depend on rj. I t follows 
that 

(dw">(k)/dkldkm)\ k^klkm 

= [_\L+±F/9~][g^k2-kvfr~]+ {\F)kvB. (2.54) 

Combining (2.50), (2.53), and (2.54) we find that 

TT/X(£) = - r x + (g^k2-k^)[2g,I(k2)+\L+^F/9~] 

+ * / V * H - C W , (2.55) 
and hence 

(SDr1)"x(*) = i(2ir)4C(g,'xi62-ft'Ax)J(*2) 
+ i F * ' * x + C i y y ] . (2.56) 

Here I(k2)^2gQI(k2)+iL+^F/9. We only invert Eq. 
(2.56) in the case that A is very large and hence L^>F. 
Then the term %Fkvkx is dominated by I{k2)kvhK in this 
case and we may drop it, leaving 

(a)-1),xW = K 2 ^ ) 4 [ ( ^ 2 ~ ^ ^ x ) / ( ^ 2 ) + C ^ 7 7 x ] . (2.57) 

This is the form considered by Bjorken. We, however, 
have explicitely calculated all the coefficients in our 
scheme and can make the observation that C is exceed­
ingly small relative to I(k2) when go is small and A large. 
This term is present in virtue of taking the cutoff very 
seriously, and there is some question as to whether this 
should be done. We shall, therefore, consider two 
possibilities, one where C is taken seriously, and the 
other corresponding to normal procedures where C = 0 . 
In the first case we find 

£>'x(fc) = 
2 r 1 r k»kx 

= • O^+rj2 

(2TrYLk2I(k2)L (ri-k)2 

+ 
1 kvfr 

c (rk) 

vkK -I 

•&)2_l 
(2.58) 

This is the result of Bjorken with explicit coefficients 
and generalized to any t]^. Within gauge type terms this 
looks as a photon propagator should, as promised earlier. 
I t is understood that the singularity l/k2I(k2) is defined 
in the usual way by adding a small imaginary part to k2. 
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Any singularities in the neighborhood of r}*k = 0 are 
handled by the identification l/^-k)2 —»^[l/(??-&)2] 
and l/r)'k—>p(l/r)-k). This procedure insures that 
1/rj • k terms have no imaginary parts so that 

IT r rj2kvkx~ 
ImSyx(&) = 8(k2)\ r x " 

7(0) 
) rx+—-b 
L (n-kyj (Tk)K 

(-k2<^m2). 

I t follows that 

k, Im3yx(&) = 0 , ( -& 2 <4m 2 ) . 

(2.59) 

(2.60) 

The comparison of £>vX(k) to the photon propagator 
in ordinary electrodynamics is facilitated by fully 
writing out (2.58). We then have 

1 T 6 S o n [ r X - * V A ' k-rj^/rj • k+V
2k»k*/ fa • k)2~] T—1: 

oLL J (2x)4[ l+(6goA)/(^)>2 

2 « x 

(2wyC (Tk)2 
(2.61) 

Aside from gauge terms and normalization, we see that 
the above propagator is identical to the second-order 
photon propagator of ordinary electrodynamics if we 
make the identification 

a = 6g0/L. (2.62) 

Assuming A/m is large this becomes, through Eq. (2.32), 

a = 6x2/ln(A/m) 

A/m^em. 
or 

This assures that A is huge. Inserting this into the 
condition (2.36) for A huge we find that 

gQm2/4w2=e-im. 

This is ample assurance that go is small for any reason­
able ?n. 

The propagating parts of this form of 3>x(&), that 
is, ®/x(k) = £>v*(k)-2kvkx/(27ryC(r)'k)2, have the use­
ful property that i7y3Vx(&) = 0. This shows, as was 
pointed out in the first section, that it is appropriate for 
the comparison to electrodynamics to take r)2 = 0. The 
terms proportional to kvkx/(r)-k)2 are particularly 
interesting. Although they are in the excitation spec­
trum of j * , they are not in any normal sense one-particle 
states. They appear explicitly because of the introduc­
tion of nonzero ^ into the theory and may be inter­
preted as representing transitions between states built 
on different, degenerate vacua. Part of the strange 
nature of these "nonpropagating terms" is due to the 
fact that, though the immediate cause of their origin is 
the broken Lorentz symmetry, they represent, in addi­
tion, an interference with the conservation of the 
current jX This is suggested by examining the form of 

the current-current commutation relations which follow 
from the real part of this Bjorken form of the photon 
propagator. This follows more directly by noting that 
the behavior given by (2.60) is essential since 

Im^^x-y) = Irm< | (j*(x)jv(y))+1) 
= i(0\{jHx),j>>(y)}\0) 

and hence &M Im3)'H '(*)=0. 
Note that if — &2>4m2 then (2.50) is no longer a 

correct representation for Im3yx(&). I t is easily verified 
that the correct representation does not satisfy (2.60). 
Therefore the theory constructed in this manner is not 
consistent with current conservation for large — k2. If 
the cutoff is on the order of m this would not be particu­
larly disturbing. However, we have demonstrated that 
to duplicate electrodynamics it is necessary for A/tn to 
be very large. I t should be emphasized that this weird 
behavior is not particularly catastrophic. Once the field 
equations are used to derive the Green's function equa­
tions, we may dispense with them and consider the 
Green's functions on their own merits. Further, the 
offensive terms are all gauge terms, and hence are 
irrelevant in physically significant measurements which 
should be gauge invariant. Therefore, we feel that in this 
sense the Bjorken formulation of the theory is plausible. 

We may, however, dispense with all these difficulties 
at once by deciding not to take the bounded term 
Crjrf seriously in (2.57) but to regard it as an anomaly 
of a cutoff procedure which would not be realized in a 
better calculation. In this case we find that 

(3)-1),xW = K27r)4[fex^2-^^x)/(^2)] 

and hence 
2 [ g , x - W * 2 ] 

2),xW = . (2.63) 
(27r)4&2/(£2) 

This is the second-order Lorentz gauge photon propa­
gator. I t has the property kvS)l,\(k) = 0. Consequently, 
we do not encounter the previous difficulty with current 
conservation. We do this, however, by forfeiting a cutoff 
Green's function theory which can be regarded fairly 
seriously. Both forms will be retained for 3)vX(£) for use 
in examining the consistency of the theory. This check 
is highly gauge-dependent, and it will be very interesting 
to see how the consistency comes about in the two cases. 

III. GENERAL CONSIDERATIONS FOR THE 
CONSISTENCY OF THE SELF-COUPLED 

FERMI THEORY 

As discussed in Sec. I, the existence of a nonzero rj* in 
a Lorentz-invariant theory places definite requirements 
on the structure of the function 

C,^(*)= i<0| [^(*) ,^(0) ] |0>. 

In this section we study this requirement as it is related 
to the structures generated by the Lagrangian (2.1) in 
order to test the consistency of the solutions that we 
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have found. The detailed calculation of C/v X is fairly 
complex and is done in the next section, using the same 
techniques as in Sec. I I . 

This analysis is facilitated by noting, since the 
operators Tixv(y) and jx(x) are Hermitian, it follows that 

2e(y°-x°) Rei(0\(T»v(y)jx(x))+\0) 

= i(0\LT^(y)JH»n\0) = C^(y--x). (3.1) 

We calculate the time-ordered product using the 
function 

T,"*(y-
r -to 

-x) = i\ 
LBJHx 

-i8 <0cn|r^Cy)|0er2> 

+ 

-{ 

5J*(x) <0o-i|0o-2) 

<Oo-i| [»8/«/H*)]r '"(y) |Oo-«>-

<0o-i|0crs> 

{0a1\(T"-'(x)jHx))+\0ai) 

(0o-i|0or2) 

<0^iI T^Or) I Oo-,) (Otri] j*(*) | ftra> 

<0<n|0<r2> <<M<W -ij-o 

Hence we have 

C^iy-x) = 2e(f-x°) ReT^iy-x) 
+irrelevant constant terms. 

(3.2) 

(3.3) 

The extra terms in Eq. (3.3) are the terms involving the 
vacuum expectation values of T^ and j * separately in 
Eq. (3.2). These are position-independent constants 
when the external sources are turned off and do not 
contribute to the commutator [/M I , , ix]. Through the 
use of the chain rule (2.10) we may rewrite (3.2) in the 
form 

T^\y-x) = ^(x-z)T^(z-y)/(2>ir)K (3.4) 

Retaining only the relevant terms we now find 

C1)^(y-x) = 2e(y°-x°) Re I d4k 

Xeik'^~x^^(k)T^(k). (3.5) 

I t is now possible to determine the exact tensor structure 
that C/vX(&) will take, using either of the photon 
propagators of Sec. I I . The considerations of this section 
depend only on the gauge of the photon propagator and 
are independent of perturbation theory. The all-
important check of the coefficients of these structures 
within the framework of calculational procedures we 
have used will be performed in the next section. 

We shall need the identities 

and for ^ light- or timelike 

e(x) / d4k eik'xp-—=iri / dAk 8(ri'k)eik'x. 
J 7]-k J 

The consistency of the theory must be determined by 
singularities of £>X/J(&) so we exploit the facts that T^v 

has the property k^Tfi^^ — T^ (0)2 = 0 and is real 
for — &2<4m2. I t then follows, using the Bjorken 
propagator with rj2 = 0 and only the parts of T^v(x) 
relevant to the consistency of the theory, that 

CV"x(s)= / dAk eik-x\ g^T^(k)e(k°)8(k2) 
J L (2ir)zLi 

e(x) |~ kx¥ 

wye Uykyj J (2TT)4C Lfo.*) 

Exploiting the fact that integrals that enter into deter­
mining the consistency must respect conservation of 
energy momentum (or regularity requirements), it may 
be shown that T^v(0) o c ^ ^ y . Finally, using the pre­
viously made observation that 8(k2)g^r)p= 8(k2)g^kp=0, 
we may establish that C/"x (x) has the form 

C/"x(x) = / d4k eik'xt(Ci/i)e(k°)5(k2)>o'kg^kv) 

+ (C*/i)d(ri-k)khiW]. (3.6) 

From the arguments of Sec. I, it follows that C\—Ci 
~ l/(27r)3. I t is the burden of an explicit calculation to 
verify this relation. Note that the second term of (3.6) 
violates current conservation and is the explicit result 
of taking the cutoff extremely seriously. This term, as 
was pointed out in Sec. I I , is directly connected with 
the zero-mass particle and nonvanishing TJ. However, it 
represents an anomalous transition between degenerate 
states and not a massless particle spectral weight. 

We can now consider the case where the cutoff is not 
taken as seriously and the propagator is in the Lorentz 
gauge. I t follows that 

C/"x(x)= / eih'x[—)i\ 
J (2TT)3 \LJ L k2 J 

X8(k2)e(k°)Tr(k). 

From conservation of energy momentum we now must 
have T^v(0) = 0. Energy-momentum conservation com­
bined with regularity requirements show that the only 
form of T^v(k) which can make a nonvanishing con­
tribution to the consistency is Tfv(k) = Cz^gfiVk2. 
Hence, the significant terms of C/v X are 

f 1 f f d*k 1/C36\ 
e(x) / d*keik'xp =Td \ d4ke(k°)8(k2+m2)eik'x C^(x) = / ——eik'*-[ )k^(rj'k)g^e(k°)8(k2). 

J tf+m2 J J (27r)3 i \ L / 
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Thus the gauge parts of S)^ are completely responsible 
for consistency. This is one of the forms mentioned in 
Sec. I. Straightforward calculation shows that C$=\L 
and that there is no restriction on 77". Again we empha­
size that the ultimate consistency of the theory hinges 
on the explicit calculation of C3 within our perturbation 
scheme to verify that the above equation is satisfied 
identically. 

IV. EXPLICIT CALCULATION OF C^ 

The symmetrical energy-momentum tensor for the 
Lagrangian (2.1) is 

7>v= _ i r v g o y a y a _ ^ [ ^ T ( ^ ^ _ a ( ^ r ) ^ ] . (4.1) 

I t may be verified by direct calculation that 
T^ is transverse, i.e., dfiT

/iV=0. By recalling that 
(O0-11 j^iy) IO0-2)/{Oai J 00*2) = v^iy), it is possible to evalu­
ate the vacuum expectation values of T^iy) in the 
presence of the source / . We find, neglecting terms of 
the form —{(d^/dJ^) to be consistent with the approxi­
mations made in Sec. I I for the function G(x,y), that 

(Oeril T"(y) 1 0 ^ / ( 0 ^ |0cr2)= -lg^gobla(y)Va(y)l 

-Hd^ t r [G(y , ? ) r> ] -av ( ^ t r [G(y{)7 '> ;W (4-2) 

From the equations of Sec. I I one may easily deduce 
that 

(—iS/bJ^z))^ (x) = -iG»a(z,x) 

= Sy*(*,:y) trlyeG(y,x)y«G(x,y)-], (4.3a) 
and that 

(-i5/8J»(z))G(x,y) 

= -itof(z,QG(x,QqyJS&y). (4.3b) 

Inserting Eq. (4.2) into definition (3.2) and using 
Eqs. (4.3) we find, when J—0, that 

Tnr*(y-x) 
= iT>^(x—z)Ji—igfiVgo7jatrypG(z—y)yaG(y—z) 

-\{d^ trG(y-z)qy*G(z-Qyv> 
-dy^txG{y-z)qytG(z-!;)y»}^y1. (4.4) 

Taking the Fourier transform of this we find 

Z7*(*) 

= &Mk)jd'pl-hg'a'gtiiTi"(2iry trWGiphMp+k)) 

~ i i ( 2 7 r ) 4 ( t r 0 7 ( ^ ( ^ ) 7 ^ G ( ^ + ^ ) ] ) ( 2 ^ + ^ > ) ] . (4.5) 

We have studied the structure of the first term of Eq. 
(4.5) in Sec. I I . I t is essentially the function ^(k) 
which was given by Eq. (2.55). We have not encountered 
the third term before in the above form so it is con­

venient to make the definition 

XtTZy^G(p)y^qG(p+k)X2pfi)+k^']' (4.6) 

In terms of the functions wliV(k) and E&liV(k) we may 
write (4.5) in the compact form 

r^H*) = ̂ (*)Ck^ a i r^ (*) -^ | , , ' (* ) ] . (4.7> 
We shall now analyze E^v{k) in a manner modeled on 

the treatment given ^"(k) in Sec. I I . The separation 
G=(G++GJ)/2+g(G+-GJ)/2 allows us to display 
E^v(k) in the form 

E^(k) = \i(2irY Id*p[txy(vG+{p)yVG+(p+k) 

- t r 7 ^ G _ ( ^ ) 7 ^ _ ( ^ + ^ ) ] [ 2 ^ + ^ ] . (4.8) 

From this form it is easily seen that E^flv(k) is odd in 77 
and even in k. I t is further seen that E^fiV(k) diverges 
quadratically as the momentum cutoff A increases. We 
must exercise the usual caution in translating integrals 
if we wish to use the cutoff in the manner used to deter­
mine the Bjorken form of the propagator. If we do not 
exercise this caution we drop the strange extraneous 
finite terms which are important in this form of the 
theory. I t can be seen at once that we shall encounter 
difficulties in this formulation. From the analysis of 
Sec. I l l it follows that the exact determination of 

E^(0) = i(27r)H / dAp tv[_qy^G(p)y^G(p)']pfi) 

is essential. This quantity is, however, not related to 
trqG(x,x), the standard divergent quantity of the theory 
by a Ward's identity. A direct calculation of this 
quantity cannot really be regarded too seriously for this 
reason. Thus the only reasonable procedure for handling 
£/V(o) is to adjust it so as to guarantee the con­
sistency of the theory. Thus the Bjorken formulation 
of the theory is consistent by a bit of trickery which 
destroys the beauty of regarding it as a theory with a 
cutoff which can be taken literally. If ??27^0, we have 
finished the calculation and must conclude that all 
consistency proceeds through the anomalous 8(rj'k) 
term. This is essentially the case for the more reasonable 
restriction rf—0. To see this we determine 

C,'"*(k)mi(6/L) {*{&)*<&)/WW* 
x[7y(£)-7y(o)] 

= (6/L)(6(k>)/(2ir)H)gV>t(k°) 

A tedious and boring calculation shows that 

Cv'"'Hk)=(F/L)(Tri/(2iry)(ri-k)g^''k^S(P)€(k'>). 
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In the limit that A»ra , C,/^x(A) = 0, and hence we 
finally find that in the Bjorken formulation for large A 
that 

C/"x0) = (56rife)/(2w)80*VV. 

Thus, the consistency hinges on the current conserva­
tion-violating aspect of the theory. Spurious states 
guarantee this consistency. Note that they are very 
complex in origin and related not only to the broken 
Lorentz symmetry and the zero-mass particle but also 
to the nature of the approximation scheme. 

The consistency with the Lorentz-gauge photon 
propagator proceeds with ease. The most divergent 
terms which come from 7 ^ ( 0 ) and hence E ^ ( 0 ) must 
not contribute in accord with the discussion in Sec. I I . 
In addition, we are not interested in any of the anoma­
lous terms which come from taking the cutoff literally. 
Thus we may let A/m become large relative to g<wa and 
translate in rja the integrals which appear in E^lxv{k). 
Performing the translation we find from (4.8) that 

E^(k) = i(2ir)H / d*p tx[y^G{p)y?G{p+k)~] 

With this, Eq. (4.7) becomes 

Inserting waP(k) as given by Eq. (2.55) into the above 
expression we find, after application of (3.3), that 

kx(r]'k) 
C^ (k) = g>»€ (jfeo) 5 (p). 

(2w)H 

This is exactly the correct form to guarantee consistency. 

V. CONCLUSIONS 
We conclude that the Bjorken theory can be formu­

lated in a consistent manner. The original form of this 
theory is somewhat objectionable because of its viola­
tion of charge conservation. This violation is, however, 
not serious since it is manifested entirely in the gauge 
structure of the resulting electrodynamics. Because of 
it the theory is consistent in a spurious manner. I t is 
primarily because of this property that this formulation 
is of interest. In a more realistic calculation in which the 
cutoff of the theory is viewed in a normal perspective, 
all calculation proceeds in a natural and unstrained 
manner. 

ACKNOWLEDGMENTS 

I am indebted to Professor Walter Gilbert for many 
enlightening discussions and for developing the initial 
framework for much of Sec. I. I enjoyed the benefit 
of conservations with Dr. T. W. B. Kibble, Dr. R. 
Lange, and Dr. R. F. Streater on the topic of spurious 
states and the Goldstone theorem. I would like to 
acknowledge Professor A. Salam's hospitality. 


